
SECTIONAL CURVATURES OF GRASSMANN MANIFOLDS

BY YUNG-CHOW WONG

UNIVERSITY OF HONG KONG

Communicated by S. S. Chern, March 6, 1968

(1) Introduction.-Let F be the field R of real numbers, the field C of complex
numbers, or the field H of real quaternions; Fn+m a left (n + m)-dimensional
Hermitian vector space over F; and Gn(FP+m) the Grassmann manifold of n-
planes in F"+m provided with the invariant Riemannian metric with respect to
which the distance between two points A and B in G.(Fn +m) is equal to the square
root of the sum of the squares of the angles between the n-planes A and B in
Ff +n (see ref. 14).

Previous studies of G,(Fn +m) have not unearthed sufficiently precise informa-
tion about its sectional curvatures. Although the components of the curvature
tensor at a point of GC(Rn+") and Gn(Cn+") have been computed in references
5, 8, and 10, all that is so far known about the sectional curvatures of G.(F +1")
seems to be that they are nonnegative but not all positive unless min(n,m) = 1,
in which case they have the range of values given in Theorem 1 in §(4) (see ref. 2,
p. 171; ref. 3, Theorem 7; ref. 1, p. 59; ref. 9, pp. 351 and 358; and ref. 8,
Theorem 4.5).

In this note, which is a continuation of reference 14 and a companion to ref-
erence 15, we shall give a complete description of the sectional curvatures of
Gn(F"+m) In § § (2) and (3), we express the curvature tensor and the sectional
curvature of G, (Fn+m) in terms of local coordinates and define the unitary cur-
vature of Gn(Hn+m). In §(4), we state our main results concerning the range
of values of the sectional curvature and certain characteristic properties of
sections of minimum and maximum curvatures. Details of these results and
similar results for the classical bounded symmetric domains will be published
later.

(2) The Curvature Tensor.-We know (ref. 14) that the invariant Riemannian
metric on Gn(Fn+m) can be arrived at in a natural and geometric way; more-
over, in a typical local coordinate system (U,Z) with neighborhood U and co-
ordinate Z (which is an n X m matrix with elements in F), it has the explicit ex-
pression

ds2 = Re Tr[(I + ZZ*)-ldZ(I + Z*Z)-ldZ*], (1)

where Z* is the conjugate transpose of Z, and Re Tr denotes the real part of the
trace. (For F = C, n = 1, and m > 1, (1) reduces to the Fubini metric of a
complex projective space; see, for example, ref. 4, §(7).) If T1,T2 are any two
tangent vectors at the point Z E U represented by their component matrices,
then (1) is equivalent to

gz(T,,T2) = Re Tr[(I + ZZ*)-lTi(I + Z*Z)-1T2*]. (2)
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To find the curvature tensor, we use the method of C. L. Siegel (ref. 11, §(17))
and L. K. Hua (ref. 7, §(8)). It is known (ref. 14) that in (U,Z) the differential
equation of the geodesics is

Z - 2ZZ*(I + ZZ*)1Z-= 0

where the dots denote derivatives with respect to the arc length. Therefore,
parallel displacement of vectors T(t) along a curve segment Z = Z(t), t E [a,b]
c R, is characterized by

dt = T Z*(I + ZZ*)1- d- + d- Z*(I +ZZ*)-1T. (3)
dt ~~~~dt dt

From this and

Rz(dZ~d2Z) T = (d2d, - d1d2) T,

we can derive the following expression for the curvature tensor Rz of Gn(FP+?)
atZ:

Rz(T7,T2)T = T[(I + Z*Z)-T2*(I + ZZ*)lT1
- (I + Z*Z)-1T1*(I + ZZ*)-lT2] + [TI(I + Z*Z)-1T2*(I + ZZ*)-1

- T2(I + Z*Z)-1T1*(I + ZZ*)-1]T. (4)

(3) Sectional Curvature and Unitary Curvature.-The curvature for the (real)
plane section spanned by the tangent vectors T1,T2 at the point Z is defined as

Kz(T1,T2),- gz(Rz(TiT2)TiT2) (5)1T1VT212
(see, for example, ref. 6, p. 65). Using (2) and (4) in (5), we obtain, for the tan-
gent vectors T1,T2 at the point Z = 0 C U,

(T,, =2 Tr[(TiT2* - T2T1*)(')* + (T1*T2-T2 (6)
Ko(T1,T2) =~4 Tr(TiTi*)Tr(T2T2*) - [Tr(TiT2* + T2T1*)12 , (6)

where ( denotes the conjugate transpose of the expression inside the preceding
pair of brackets.
We can prove
LEMMA. (a) Given any tangent vector T at the point Z = 0 C U, there exists

a unitary matrix N of order n such that

NfN*TT* = TT*NfN* for all r & F.

(b) For any such unitary matrix N and any nonreal r F F, we have

Ko(T1NfN*T) = 4 Tr(TT*TT*) (7)

For a G,(F"+"'), where F = C or H, we call the real section spanned by T and
any such NrN*T a unitary section at Z = 0, and the function of T on the right
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side of equation (7) the unitary curvature for T at Z = 0. It is easy to see that,
for a G (C +n), unitary section coincides with holomorphic section and unitary
curvature coincides with holomorphic curvature (ref. 3, §(2)). As in reference
14, § (11), we can show that for a G,, (Fn+m), where F = C or H, the range of values
of the unitary curvature kz is

4 _- G kz(T) <, 4.

(4) Range of Values of the Sectional Curvature and Sections of Minimum and
Maximum Curvatures.-A few preliminary remarks must precede the statement
of our main results. We know (ref. 14, Theorem 13) that any Grassmann mani-
fold can be naturally, isometrically imbedded in a "larger" Grassmann manifold
as a totally geodesic submanifold. In particular, FP1, RP2, and RPM can all be
imbedded in a G,,(F"+m) in this manner if min(n,m) ) 2. We know also (ref.
13, Theorems 7.2(i) and 8.1; and ref. 12, Theorem 2) that in a Euclidean
R4, any maximal family of mutually isoclinic 2-planes, when viewed as a
subset of G2(R4), is a totally geodesic submanifold 4 of G2(R4), which is iso-
metric with a 2-dimensional sphere of radius 1//2. When G2(R4) is naturally
imbedded in G,,(R" +m), where min(n,m) ) 2, the image of 4b is a totally geodesic
submanifold of G.,(R +m) which we call a geodesic 2-sphere in G,,(RI +m).
We can now state our main results. The proof which we omit is based on

formula (6), matrix algebra over F, and our knowledge of G,,(FP +?n) obtained by
the method described in reference 14.
THEOREM 1. (Known; see §(1), second paragraph.) Let us denote G1(Fl+rn)

by FPm. Then
(a) For a RP1, Kz(T7,T2) is not defined. For a RPm, where m > 2, Kz(Ti,T2)

= 1.
(b) For a CPI or HP1, Kz(T,,T2) = 4. For a CPm or HP"n, where m > 2,

1 S Kz(T1,T2) $ 4.
THEOREM 2. For an FPm = G,(Fl+rn), where F = C or H and m ) 2, the

following are true:
(a) (i) A section at a point of FPm has minimum curvature 1 if the geodesics

tangent to it generate a totally geodesic submanifold of real dimension 2 which is
isometric with an RP2.

(ii) A set of tangent vectors at a point Z is a maximal set such that Kz(T,,T2)
= minimum 1 for every T,, T2 &E I if the geodesics tangent to the vectors of I at
Z generate a totally geodesic submanifold of real dimension m which is isometric with
an RPm.

(iii) Given any tangent vector T at a point Z, there exists at least one such maxi-
mal set I containing T.

(b) A section has maximum curvature 4 iff it is a unitary section. (For CPm,
(b) is known; see ref. 3, Theorem 7.)
THEOREM 3. (a) For a Gn(R" +m), where min n,m) > 2,

0 < Kz(TlT2) < 2.
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(b) For a G.(Cf +m) or a G.(H" +3), where min(n,m) ) 2,

0 % Kz(TlT2) $, 4.

THEOREM 4. For a G,(F"+rn), where min(nm) , 2, thefollowing are true:
(a) Kz(T1,T2) = minimum 0 iff the two geodesics tangent to T1,T2 at Z have a

commonframe of mutually orthogonal angle-planes (see ref. 14, Theorem 7).
(b) A maximal set ' of tangent vectors at a point Z such that Kz(T1, T2) = mini-

mum 0 for every T1, T2 C I is characterized by the property that the geodesics tangent
to the tangent vectors in I at Z generate a totally geodesic submanifold of Gn(F3 +I)
which is isometric with aflat torus of real-dimension min(n,m).

(c) At each point of G,, (F" +In), there are o nm -r,X 2nm or 004nm+2r such maxi-
mal sets I according as F = R, C or H, where r = min(nm).
An easy consequence of Theorem 4(b) is the result, already known, that the

maximum dimension of a flat, totally geodesic submanifold of GnU(Fn +3') is
min(n,m); in other words, the rank of Gn(F'+m) is min(n,m) (see, for example,
ref. 6, pp. 209, 349, and 351).
THEOREM 5. (a) For a Gn(RI'+rn), where min(nm) > 2, thefollowing are true:
(i) A section has maximum curvature 2 iff it is tangent to a geodesic 2-sphere.
(ii) Any geodesic tangent to a section of maximum curvature 2 is a closed geodesic

of length /2 7r.
(ii) If y is any closed geodesic of length x12 or and Z any poent of oy, then there is

a unique section ofmaximum curvature 2 tangent to y at Z.
(b) For a Gn(F+"f"), where F = C orH and min(nm) ) 2, a section has maximum

curvature 4 iff it is tangent to a totally geodesic submanifold of Gni(Fn+n) which is
isometric with an FP'; or equivalently, iff it is a unitary section determined by a
tangent vector to a closed geodesic of length r. Moreover, at each point, there are
infinitely many sections ofmaximum curvature 4.
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